Micro - Structure Characterization of Composite Wind Turbine Blade Following Structural Testing
نویسنده
چکیده
This paper presents the results of research of the microstructure of the composite blade W55RBVS for the wind turbine of up to 6kW power after structural testing up to failure. The first part of the testing consists of the static testing of the structure up to the moment of the blade failure. The aim of the first part of the test was to define rigidity of the blade W55RBVS, to determine the maximum force which leads to faliure and the relative span of the blade failure. Blade testing i s performed in the Aerotechnics Laboratory of the Faculty of Mechanical Engineering, Belgrade University. The second part of the testing consists of comparing the critically loaded part with sub-critically loaded part. This test was carried out by atomic force microscopy (Eng. Atomic Force Microscopy-AFM). All the results and analysis are presented in this paper. The test result will be used to redesign the blades. Index Term— Structural Testing, Small Wind Turbine, Composite Blade, Blade Testing, Microstructure, Atomic Force Microscopy.
منابع مشابه
Composite Technologies for Large Wind Turbine Blades
As part of the U.S. Department of Energy’s Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts LLC (GEC) is performing a study concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multimegawatt range. The project team for this work includes experts in all areas of wind turbine blad...
متن کاملDelamination Analysis in Composite Root of a Carbon-Layer Reinforced Wind Turbine Blade
The inconsistencies accompanied with material properties tipically cause the rise of delamination risk in composites made of different types of glass and crabon fibers. In this study, the delamination of a composite beam reinforced with a carbon layer under bending load is investigated. To this end, a small piece of a wind turbine blade root in the form of a heterogeneous laminated plate is sim...
متن کاملNumerical aeroelastic analysis of wind turbine NREL Phase VI Rotor
This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI1 responses of HAWT2. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. Aeroelastic responses of the blade were obtained by ...
متن کاملNumerical aeroelastic analysis of wind turbine NREL Phase VI Rotor
This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI[1] responses of HAWT[2]. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. ...
متن کاملA robust engineering approach for wind turbine blade profile aeroelastic computation
Wind turbines are important devices that extract clean energy from wind flow. The efficiency of wind turbines should be examined under various working conditions in order to estimate off-design performance. Numerous aerodynamic and structural research works have been carried out to compute aeroelastic effects on wind turbines. Most of them suffer from either the simplicity of the modelling ...
متن کامل